ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.) По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола. На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.) |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)
Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.
В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.
На стороне BC ромба ABCD выбрана точка M. Прямые, проведённые через M перпендикулярно диагоналям BD и AC, пересекают прямую AD в точках P и Q соответственно. Оказалось, что прямые PB, QC и AM пересекаются в одной точке. Чему может быть равно отношение BM : MC?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке