ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1). |
Страница: << 1 2 [Всего задач: 10]
Про положительные числа a, b, c известно, что 1/a + 1/b + 1/c ≥ a + b + c. Докажите, что a + b + c ≥ 3abc.
Произведение положительных чисел x, y и z равно 1.
Для некоторых положительных чисел x и y выполняется неравенство x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2.
Сумма положительных чисел a, b, c равна 3. Докажите, что
В равнобедренном треугольнике ABC ( AB=BC ) точка O –
центр описанной окружности. Точка M лежит на отрезке BO ,
точка M' симметрична M оносительно середины AB . Точка
K – точка пересечения M'O и AB . Точка L на стороне
BC такова, что
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке