ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число). Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники. В пирамиде ABCD рёбра AD , BD и CD равны 5, расстояние от точки D до плоскости ABC равно 4. Найдите радиус окружности, описанной около треугольника ABC . В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых AL = AB и Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других? У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число. Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам? Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей? На оси Ox произвольно расположены различные точки X1, ..., Xn, n ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть y = f1(x), ..., y = fm(x) – соответствующие параболы. Докажите, что парабола y = f1(x) + ... + fm(x) пересекает ось Ox в двух точках. Фокусник отгадывает площадь выпуклого 2008-угольника A1A2... A2008, находящегося за ширмой. Он называет две точки на периметре многоугольника; зрители отмечают эти точки, проводят через них прямую и сообщают фокуснику меньшую из двух площадей частей, на которые 2008-угольник разбивается этой прямой. При этом в качестве точки фокусник может назвать либо вершину, либо точку, делящую указанную им сторону в указанном им численном отношении. Докажите, что за 2006 вопросов фокусник сможет отгадать площадь многоугольника. Существуют ли такие ненулевые числа a, b, c, что при любом n > 3 можно найти многочлен вида Pn(x) = xn + ... + ax² + bx + c, имеющий ровно n (не обязательно различных) целых корней? Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение x² – S(A)x + S(B) = 0, где S(M) – сумма чисел множества M, имело целый корень? Решите в натуральных числах уравнение 3x + 4y = 5z. |
Страница: 1 2 >> [Всего задач: 7]
Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?
Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?
Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей
Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?
Решите в натуральных числах уравнение 3x + 4y = 5z.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке