ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок). В пифагоровой таблице умножения выделили прямоугольную рамку толщиной в одну клетку, причём каждая сторона рамки состоит из нечётного числа клеток. Клетки рамки поочередно раскрасили в два цвета – чёрный и белый. Докажите, что сумма чисел в чёрных клетках равна сумме чисел в белых клетках. Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.) Расставьте скобки и знаки арифметических действий так, чтобы получилось
верное равенство: По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают. На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число |
Страница: << 1 2 3 >> [Всего задач: 12]
Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.
На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) .
Имеется три кучи камней. Сизиф таскает по одному камню из кучи в кучу. За каждое перетаскивание он получает от Зевса количество монет, равное разности числа камней в куче, в которую он кладёт камень, и числа камней в куче, из которой он берёт камень (сам перетаскиваемый камень при этом не учитывается). Если указанная разность отрицательна, то Сизиф возвращает Зевсу соответствующую сумму. (Если Сизиф не может расплатиться, то великодушный Зевс позволяет ему совершать перетаскивание в долг.) В некоторый момент оказалось, что все камни лежат в тех же кучах, в которых лежали первоначально. Каков наибольший суммарный заработок Сизифа на этот момент?
Страница: << 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке