ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все авторы
>>
Гаврилюк А.
|
||||||||||||
Страница: 1 [Всего задач: 2]
Дан остроугольный треугольник ABC. На сторонах AB и BC во внешнюю сторону построены равные прямоугольники ABMN и LBCK так, что AB = KC.
На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что ∠AKB = ∠ADC. Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.
Страница: 1 [Всего задач: 2] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|