ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Полянский А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 65370

Темы:   [ Пересекающиеся окружности ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теорема косинусов ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.

Прислать комментарий     Решение

Задача 116075

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Теоремы Чевы и Менелая ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 9,10,11

Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

Прислать комментарий     Решение

Задача 116721

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 10,11

Пусть p – простое число. Набор из  p + 2  натуральных чисел (не обязательно различных) назовём интересным, если сумма любых p из них делится на каждое из двух оставшихся чисел. Найдите все интересные наборы.

Прислать комментарий     Решение

Задача 116776

Темы:   [ Вписанные и описанные окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Пересекающиеся окружности ]
Сложность: 4
Классы: 10,11

Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что  AB1AC1 = CA1CB1 = BC1BA1.  Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 116837

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Неравенства с углами ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 10,11

На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .