Страница:
<< 1 2 3 4 [Всего задач: 18]
|
|
Сложность: 4 Классы: 10,11
|
На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.
|
|
Сложность: 4+ Классы: 8,9,10
|
В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.
|
|
Сложность: 5 Классы: 10,11
|
На сторонах $AB,BC,CA$ треугольника $ABC$ выбраны точки $C_1,A_1,B_1$ так, что отрезки $AA_1,BB_1,CC_1$ пересекаются в одной точке. Лучи $B_1A_1$ и $B_1C1$ пересекают описанную окружность в точках $A_2$ и $C_2$. Докажите, что точки $A,C,$ точка пересечения $A_2C_2$ с $BB_1$ и середина $A_2C_2$ лежат на одной окружности.
Страница:
<< 1 2 3 4 [Всего задач: 18]