ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каком наибольшем натуральном m число m!⋅2022! будет факториалом натурального числа? В треугольнике ABC точки O и H – центр описанной окружности и ортоцентр соответственно. Известно, что BH – биссектриса угла ABO. Отрезок из точки O, параллельный стороне AB, пересекает сторону AC в точке K. Докажите, что AH=AK. Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой. Среди чисел a + b, a – b, ab, a/b два положительных и два отрицательных. Является ли число b положительным или отрицательным? В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны? Дан четырёхугольник ABCD, в котором AC = BD = AD; точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
На окружности радиуса R с диаметром AD и центром O выбраны точки B и С по одну сторону от этого диаметра. Около треугольников ABO и CDO описаны окружности, пересекающие отрезок BC в точках F и E. Докажите, что AF·DE = R².
У равносторонних треугольников ABC и CDE вершина C лежит на отрезке AE, вершины B и D по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами O1 и O2 повторно пересекаются в точке F. Прямая O1O2 пересекает AD в точке K. Докажите, что AK=BF.
В треугольнике ABC точки O и H – центр описанной окружности и ортоцентр соответственно. Известно, что BH – биссектриса угла ABO. Отрезок из точки O, параллельный стороне AB, пересекает сторону AC в точке K. Докажите, что AH=AK.
Диагонали прямоугольника ABCD пересекаются в точке E. Окружность с центром в точке E лежит внутри прямоугольника. Из вершин C, D, A проведены касательные к окружности CF, DG, AH, причем CF пересекает DG в точке I, EI пересекает AD в точке J, а прямые AH и CF пересекаются в точке L. Докажите, что отрезок LJ перпендикулярен AD.
Дан четырёхугольник ABCD, в котором AC = BD = AD; точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке