Страница:
<< 1 2
3 >> [Всего задач: 14]
|
|
Сложность: 5- Классы: 8,9,10
|
В колоде
n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз.
За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить
ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно
добиться того, чтобы все карты лежали рубашками вниз?
|
|
Сложность: 5- Классы: 7,8,9
|
В микросхеме 2000 контактов, первоначально любые два контакта соединены
отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода,
причем Вася (он начинает) за ход режет один провод, а Петя – либо один,
либо три провода.
Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает.
Кто из них выигрывает при правильной игре?
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране N 1998 городов, и из каждого осуществляются беспосадочные
перелеты в три других города (все авиарейсы двусторонние). Известно, что
из каждого города, сделав несколько пересадок, можно долететь до любого
другого. Министерство Безопасности хочет объявить закрытыми 200 городов,
никакие два из которых не соединены авиалинией. Докажите, что это можно
сделать так, чтобы можно было долететь из каждого незакрытого города в
любой другой, не делая пересадок в закрытых городах.
|
|
Сложность: 5 Классы: 8,9,10,11
|
В микросхеме 2000 контактов, первоначально любые два контакта соединены
отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода,
причем Вася (он начинает) за ход режет один провод, а Петя – либо два,
либо три провода.
Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает.
Кто из них выигрывает при правильной игре?
Страница:
<< 1 2
3 >> [Всего задач: 14]