Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Федулкин Л.Е.

Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Можно ли разрезать по границам клеток фигуру на рисунке на 4 одинаковые части?

Вниз   Решение


Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

ВверхВниз   Решение


Положительные числа a, b, c таковы, что  a² + b² – ab = c².  Докажите, что (a – c)(b – c) ≤ 0.

ВверхВниз   Решение


В треугольнике $ABC$ провели высоты $AX$ и $BZ$, а также биссектрисы $AY$ и $BT$. Известно, что углы $XAY$ и $ZBT$ равны. Обязательно ли треугольник $ABC$ равнобедренный?

ВверхВниз   Решение


Автор: Матвеев А.

Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$ был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.

ВверхВниз   Решение


Автор: Матвеев А.

Дан выпуклый четырёхугольник $ABCD$. Точки $X$ и $Y$ лежат на продолжениях за точку $D$ сторон $CD$ и $AD$ соответственно, причем $DX=AB$ и $DY=BC$. Аналогично, точки $Z$ и $T$ лежат на продолжениях за точку $B$ сторон $CB$ и $AB$, причем $BZ=AD$ и $BT=DC$. Пусть $M_1$ – середина $XY$, $M_2$ – середина $ZT$. Докажите, что прямые $DM_1$, $BM_2$ и $AC$ пересекаются в одной точке.

ВверхВниз   Решение


Автор: Власова Н.

По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 116062

Темы:   [ Турниры и турнирные таблицы ]
[ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7

Перед футбольным матчем команд "Север" и "Юг" было дано пять прогнозов:
  а) ничьей не будет;
  б) в ворота "Юга" забьют;
  в) "Север" выиграет;
  г) "Север" не проиграет;
  д) в матче будет забито ровно 3 гола.
После матча выяснилось, что верными оказались ровно три прогноза. С каким счётом закончился матч?

Прислать комментарий     Решение

Задача 65132

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7

Охотник рассказал приятелю, что видел в лесу волка с метровым хвостом. Тот рассказал другому приятелю, что в лесу видели волка с двухметровым хвостом. Передавая новость дальше, простые люди увеличивали длину хвоста вдвое, а творческие – втрое. В результате по телевизору сообщили о волке с хвостом длиной 864 метра. Сколько простых и сколько творческих людей "отрастили" волку хвост?

Прислать комментарий     Решение

Задача 65443

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8

Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Прислать комментарий     Решение

Задача 66550

Тема:   [ Задачи-шутки ]
Сложность: 3
Классы: 6,7,8

Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.)
Прислать комментарий     Решение


Задача 65437

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 5,6,7

Пончик находится в сломанном луноходе на расстоянии 18 км от Лунной базы, в которой сидит Незнайка. Между ними устойчивая радиосвязь. Запаса воздуха в луноходе хватит на 3 часа, кроме того, у Пончика есть баллон для скафандра, с запасом воздуха на 1 час. У Незнайки есть много баллонов с запасом воздуха на 2 часа каждый. Незнайка не может нести больше двух баллонов одновременно (одним из них он пользуется сам). Скорость передвижения по Луне в скафандре равна 6 км/ч. Сможет ли Незнайка спасти Пончика и не погибнуть сам?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .