Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кожевников П.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Фома и Ерёма делят кучку из 25 монет в 1, 2, 3, ..., 25 алтынов. На каждом ходу один из них выбирает монету из кучки, а другой говорит, кому её отдать. Первый раз выбирает Фома, далее тот, у кого сейчас больше алтынов, при равенстве – тот же, кто в прошлый раз. Может ли Фома действовать так, чтобы в итоге обязательно получить больше алтынов, чем Ерёма, или Ерёма всегда сможет Фоме помешать?

Вниз   Решение


На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Вверх   Решение

Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81]      



Задача 65469

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Теорема Пика ]
Сложность: 4-
Классы: 8,9,10,11

Дан клетчатый квадрат 10×10. Внутри него провели 80 единичных отрезков по линиям сетки, которые разбили квадрат на 20 многоугольников равной площади. Докажите, что все эти многоугольники равны.

Прислать комментарий     Решение

Задача 66015

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Прислать комментарий     Решение

Задача 66199

Темы:   [ Многочлены (прочее) ]
[ Уравнения высших степеней (прочее) ]
[ Производная и экстремумы ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Пусть  f(x) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение  f(x) = a  при любом значении a имеет чётное число решений?

Прислать комментарий     Решение

Задача 66269

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Признаки подобия ]
[ Симметрия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

В треугольнике ABC  I и Ia – центры вписанной и вневписанной окружностей, A' точка описанной окружности, диаметрально противоположная A, AA1 – высота. Докажите, что  ∠IA'Ia = ∠IA1Ia.

Прислать комментарий     Решение

Задача 66310

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства симметрий и осей симметрии ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что  PQ || BC.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .