Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Лифшиц Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).

А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Вниз   Решение


Автор: Прика С.

В пифагоровой таблице умножения выделили прямоугольную рамку толщиной в одну клетку, причём каждая сторона рамки состоит из нечётного числа клеток. Клетки рамки поочередно раскрасили в два цвета – чёрный и белый. Докажите, что сумма чисел в чёрных клетках равна сумме чисел в белых клетках.
Пифагорова таблица умножения – это клетчатая таблица, в которой на пересечении m-й строки и n-го столбца стоит число mn (для любых натуральных m и n).

ВверхВниз   Решение


Автор: Шноль Д.Э.

Покажите, как разрезать квадрат размером 5×5 клеток на "уголки" шириной в одну клетку так, чтобы все "уголки" состояли из разного количества клеток. (Длины "сторон" уголка могут быть как одинаковыми, так и различными.)

ВверхВниз   Решение


Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство:  

ВверхВниз   Решение


По кругу написаны все целые числа от 1 по 2010 в таком порядке, что при движении по часовой стрелке числа поочередно то возрастают, то убывают.
Докажите, что разность каких-то двух чисел, стоящих рядом, чётна.

ВверхВниз   Решение


На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число    (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.

ВверхВниз   Решение


Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся
  а) 15 одноклассников;
  б) 16 одноклассников?

ВверхВниз   Решение


В треугольниках АВС и A1B1C1:  ∠А = ∠А1,  равны высоты, проведённые из вершин В и В1, а также равны медианы, проведённые из вершин С и С1. Обязательно ли эти треугольники равны?

ВверхВниз   Решение


На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путник встретил троих островитян и спросил каждого из них: ''Сколько рыцарей среди твоих спутников?''. Первый ответил: ''Ни одного''. Второй сказал: ''Один''. Что сказал третий?

ВверхВниз   Решение


Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 110072

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?
Прислать комментарий     Решение


Задача 109768

Темы:   [ Системы точек ]
[ Неравенства с площадями ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 7,8,9

Автор: Лифшиц Ю.

На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.
Прислать комментарий     Решение


Задача 110065

Темы:   [ Целочисленные решетки (прочее) ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Лифшиц Ю.

Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?

Прислать комментарий     Решение

Задача 109748

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
[ Выпуклые многоугольники ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Лифшиц Ю.

Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов. Докажите, что существует треугольник, все стороны которого целиком лежат на диагоналях одного цвета. (Вершины треугольника не обязательно должны оказаться вершинами исходного многоугольника.)
Прислать комментарий     Решение


Задача 109749

Темы:   [ Перебор случаев ]
[ Математическая логика (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 7,8,9

Автор: Лифшиц Ю.

Юра выложил в ряд 2001 монету достоинством 1, 2 и 3 копейки. Оказалось, что между любыми двумя копеечными монетами лежит хотя бы одна монета, между любыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между любыми двумя трехкопеечными монетами лежат хотя бы три монеты. Сколько у Юры могло быть трехкопеечных монет?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .