ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Сергей Валерьевич Маркелов (1976-2024) - математик, популяризатор. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.
Дан выпуклый четырёхугольник ABCD и точка O внутри него.
Известно, что ∠AOB = ∠COD = 120°, AO = OB и CO = OD. Пусть K, L и M – середины отрезков AB, BC и CD соответственно. Докажите, что
Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?
Многоугольник можно разрезать на две равные части тремя различными способами.
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 55]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке