ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Чему равна сумма цифр всех чисел от единицы до миллиарда? Пусть O — центр описанной окружности треугольника ABC,
H — точка пересечения высот. Докажите, что
a2 + b2 + c2 = 9R2 - OH2.
Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))). На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий? Докажите, что количество частей, на которые
данные прямые разбивают плоскость, равно
1 + n + Части, на которые плоскость разрезана прямыми. раскрашены в красный и синий цвет так, что соседние части разного цвета (см. задачу 27.1). Пусть a -- количество красных частей, b — количество синих частей. Докажите, что
a
причем равенство достигается тогда и только тогда, когда
красные области — треугольники и углы.
На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги. Докажите, что
S = rc2tg(
Числа [a], [2a], ..., [Na] различны между собой, и числа
Решите систему уравнений: Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами, Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых? |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
Для положительных чисел x1, x2, ..., xn докажите неравенство
Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке