Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Произволов В.В.

Вячеслав Викторович Произволов (род. в 1939) - математик, к.ф-м.н., автор книги "Задачи на вырост"

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Существует ли бесконечное число таких троек целых чисел x, y, z, что   x² + y² + z² = x³ + y³ + z³?

Вниз   Решение


В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

ВверхВниз   Решение


На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?

ВверхВниз   Решение


Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

ВверхВниз   Решение


Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

ВверхВниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

ВверхВниз   Решение


Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

ВверхВниз   Решение


Для заданных натуральных чисел k0<k1<k2 выясните, какое наименьшее число корней на промежутке [0; 2π) может иметь уравнение вида

sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0

где A1, A2 – вещественные числа.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


На прямой через равные промежутки отмечены 1996 точек. Петя раскрашивает половину из них в красный цвет, а остальные – в синий. Затем Вася разбивает их на пары красная-синяя так, чтобы сумма расстояний между точками в парах была максимальной. Докажите, что этот максимум не зависит от того, какую раскраску сделал Петя.

ВверхВниз   Решение


В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 87]      



Задача 103833

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7

На острове Контрастов живут и рыцари, и лжецы. Рыцари всегда говорят правду, лжецы всегда лгут. Некоторые жители заявили, что на острове чётное число рыцарей, а остальные заявили, что на острове нечётное число лжецов. Может ли число жителей острова быть нечётным?

Прислать комментарий     Решение

Задача 103856

Темы:   [ Перебор случаев ]
[ Четность и нечетность ]
[ Доказательство от противного ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Прислать комментарий     Решение

Задача 108161

Темы:   [ Признаки и свойства параллелограмма ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 108606

Темы:   [ Неравенство треугольника ]
[ Симметрия помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 8,9

В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

Прислать комментарий     Решение

Задача 108613

Темы:   [ Диаметр, основные свойства ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .