Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]
|
|
Сложность: 4 Классы: 7,8,9,10
|
На плоскости отметили n (n > 2) прямых, проходящих через одну точку O таким образом, что для каждых двух из них найдётся
такая отмеченная прямая, которая делит пополам одну из пар вертикальных углов,
образованных этими прямыми. Докажите, что проведённые прямые делят полный угол
на равные части.
|
|
Сложность: 4 Классы: 7,8,9
|
Набор из 2003 положительных чисел таков, что для любых двух
входящих в него чисел
a и
b (
a>b ) хотя бы одно из чисел
a+b
или
a-b тоже входит в набор.
Докажите, что если данные числа упорядочить по возрастанию, то
разности между соседними числами окажутся одинаковыми.
|
|
Сложность: 4 Классы: 8,9,10
|
Среди 11 внешне одинаковых монет 10 настоящих,
весящих по 20 г, и одна фальшивая, весящая 21 г.
Имеются чашечные весы, которые оказываются в равновесии,
если груз на правой их чашке ровно вдвое тяжелее, чем на левой.
(Если груз на правой чашке меньше, чем удвоенный груз на левой, то
перевешивает левая чашка, если больше, то правая.)
Как за три взвешивания на этих весах найти фальшивую монету?
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется квадрат клетчатой бумаги размером 102×102 клетки
и связная фигура неизвестной формы, состоящая из 101 клетки. Какое
наибольшее число таких фигур можно с гарантией вырезать из этого
квадрата? Фигура, составленная из клеток, называется связной, если
любые две ее клетки можно соединить цепочкой ее клеток, в которой
любые две соседние клетки имеют общую сторону.
|
|
Сложность: 5+ Классы: 9,10,11
|
Знайка пишет на доске 10 чисел, потом Незнайка дописывает ещё 10 чисел, причём все 20 чисел должны быть положительными и различными. Мог ли Знайка написать такие
числа, чтобы потом гарантированно суметь составить 10 квадратных трёхчленов
вида x² + px + q, среди коэффициентов p и q которых встречались бы все записанные числа, и (действительные) корни этих трёхчленов принимали ровно 11 различных значений?
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]