ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри треугольника $ABC$ на биссектрисе угла $A$ выбрана произвольная точка $J$. Лучи $BJ$ и $CJ$ пересекают стороны $AC$ и $AB$ в точках $K$ и $L$ соответственно. Касательная к описанной окружности треугольника $AKL$ в точке $A$ пересекает прямую $BC$ в точке $P$. Докажите, что $PA=PJ$. У многочленов Р(х) и Q(х) – один и тот же набор целых коэффициентов (их порядок – различен).
Две равные окружности касаются друг друга. Постройте такую трапецию, что каждая из окружностей касается трёх её сторон, а центры окружностей лежат на диагоналях трапеции.
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$. Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$. Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки. Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно. Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 90]
В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Существуют ли три попарно различных ненулевых целых числа, сумма которых равна нулю, а сумма тринадцатых степеней которых является квадратом некоторого натурального числа?
Две равные окружности касаются друг друга. Постройте такую трапецию, что каждая из окружностей касается трёх её сторон, а центры окружностей лежат на диагоналях трапеции.
Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.
Натуральные числа a, x и y, большие 100, таковы, что y² – 1 = a²(x² – 1). Какое наименьшее значение может принимать дробь a/x?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке