ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Решите уравнение 3x + 5y = 7 в целых числах. Целые числа a, x1, x2, ..., x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)
Целые числа a, x1, x2, ..., x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0.
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа.
Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке