ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подисточники:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно? По кругу расставлены 15 натуральных чисел. Докажите, что найдутся два соседних числа такие, что после их выкидывания оставшиеся числа нельзя разбить на две группы с равной суммой. В городе 57 автобусных маршрутов. Известно, что: |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]
Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
36 т груза упаковано в мешки вместимостью не более 1 т. Доказать, что четырёхтонный грузовой автомобиль за 11 поездок может перевезти этот груз.
Найти наименьшее натуральное число A, удовлетворяющее следующим
условиям:
На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
Постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке