ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Проекция диагонали равнобедренной трапеции на её большее основание равна a, боковая сторона равна b. Найдите площадь трапеции, если угол при её меньшем основании равен 150o.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 111799  (#08.4.11.6)

Темы:   [ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Подобные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

На диагонали BD вписанного четырёхугольника ABCD выбрана такая точка K, что  ∠AKB = ∠ADC.  Пусть I и I' – центры вписанных окружностей треугольников ACD и ABK соответственно. Отрезки II' и BD пересекаются в точке X. Докажите, что точки A, X, I, D лежат на одной окружности.

Прислать комментарий     Решение

Задача 111800  (#08.4.11.7)

Тема:   [ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Автор: Исаев М.

Числа x1, x2, ..., xn таковы, что  x1x2 ≥ ... ≥ xn ≥ 0  и     Докажите, что  

Прислать комментарий     Решение

Задача 111801  (#08.4.11.8)

Темы:   [ Теория графов (прочее) ]
[ Раскраски ]
[ Подсчет двумя способами ]
[ Задачи с ограничениями ]
Сложность: 5
Классы: 8,9,10,11

Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .