ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 99]      



Задача 30652  (#066)

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Решите уравнение  2x + 3y + 3z = 11  в целых числах.

Прислать комментарий     Решение

Задача 30653  (#067)

Тема:   [ Уравнения в целых числах ]
Сложность: 2
Классы: 6,7

Фишка стоит на одном из полей бесконечной в обе стороны клетчатой полоски бумаги. Она может сдвигаться на m полей вправо или на n полей влево.
При каких m и n она сможет переместиться в соседнюю справа клетку?

Прислать комментарий     Решение

Задача 30654  (#068)

Тема:   [ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9

Решить в целых числах уравнение  (2x + y)(5x + 3y) = 7.

Прислать комментарий     Решение

Задача 30655  (#069)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  xy = x + y + 3.

Прислать комментарий     Решение

Задача 30656  (#070)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Решить в целых числах уравнение  x² = 14 + y².

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .