ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям: Прямая, пересекающая основание равнобедренного треугольника и проходящая через вершину, разбивает этот треугольник на два треугольника.
На стороне AB треугольника ABC взяты точки M и N, причём AM : MN : NB = 2 : 2 : 1, а на стороне AC — точка K, причём AK : KC = 1 : 2. Найдите площадь треугольника MNK, если площадь треугольника ABC равна 1.
|
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 6702]
В треугольнике ABC медиана AM продолжена за точку M на
расстояние, равное AM.
Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка.
Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что AO = BO.
Высоты треугольника ABC, проведённые из вершин B и C
пересекаются в точке M. Известно, что BM = CM.
Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке