ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]      



Задача 61488  (#11.061)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Обращение степенного ряда. Докажите, что если a0$ \ne$ 0, то для ряда F(x) существует ряд F-1(x) = b0 + b1x +...+ bnxn +... такой, что F(x)F-1(x) = 1.

Прислать комментарий     Решение

Задача 61489  (#11.062)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 8,9,10,11

Вычислите:

а) (1 + x)-1;     б) (1 - x)-1;    в) (1 - x)-2.
Прислать комментарий     Решение

Задача 61490  (#11.063)

Тема:   [ Формальные степенные ряды ]
Сложность: 3
Классы: 10,11

Пусть F(x) — производящая функция последовательности {an}. Докажите равенство $ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right.$an = $ {\dfrac{F^{(n)}(x)}{n!}}$$ \left.\vphantom{a_n=\dfrac{F^{(n)}(x)}{n!}}\right\vert _{x=0}^{}$.

Прислать комментарий     Решение

Задача 61491  (#11.064)

Тема:   [ Формальные степенные ряды ]
Сложность: 3+
Классы: 9,10,11

Вычислите производящие функции следующих последовательностей:

а) an = n;    б) an = n2;    в) an = Cmn.

Прислать комментарий     Решение

Задача 61492  (#11.065)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Многочлены (прочее) ]
Сложность: 4-
Классы: 10,11

Вычислите суммы:
  а)  

  б)  

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .