|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке. Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка – черная, соответственно белым, если клетка белая. Пусть A – количество черных отрезков на периметре, B – количество белых, и пусть многоугольник состоит из a черных и b белых клеток. Докажите, что A-B=4(a-b) . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Найти остаток 1316 – 255·515 от деления на 3.
Доказать, что 776776 + 777777 + 778778 делится на 3.
Найти остаток 418 + 517 от деления на 3.
Найти остаток (116 + 1717)21·749 от деления на 8.
Доказать, что для любого n
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|