Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если  ∠ABO = 40°.

Вниз   Решение


Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?

ВверхВниз   Решение


Окружность, вписанная в треугольник ABC, касается стороны AB в точке M, при этом AM = 1, BM = 4. Найдите CM, если известно, что $ \angle$BAC = 120o.

ВверхВниз   Решение


Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?

ВверхВниз   Решение


Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.

ВверхВниз   Решение


Автор: Петров Ф.

На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78211

Тема:   [ Четырехугольники (построения) ]
Сложность: 3
Классы: 9,10

Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.
Прислать комментарий     Решение


Задача 78214

Темы:   [ Обыкновенные дроби ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 8,9,10

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Прислать комментарий     Решение

Задача 78218

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

Прислать комментарий     Решение

Задача 78224

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.

Прислать комментарий     Решение

Задача 78206

Темы:   [ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .