ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если ∠ABO = 40°. Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Окружность, вписанная в треугольник ABC, касается стороны AB в
точке M, при этом AM = 1, BM = 4. Найдите CM, если известно, что
Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число? Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных. На прямой сидит конечное число лягушек в различных целых точках. За ход ровно одна лягушка прыгает на 1 вправо, причём они по-прежнему должны быть в различных точках. Мы вычислили, сколькими способами лягушки могут сделать n ходов (для некоторого начального расположения лягушек). Докажите, что если бы мы разрешили тем же лягушкам прыгать влево, запретив прыгать вправо, то способов сделать n ходов было бы столько же. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Через данную вершину A выпуклого четырёхугольника ABCD провести прямую, делящую его площадь пополам.
Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.
a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби
В каком-то году некоторое число ни в одном месяце не было воскресеньем. Определить это число.
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке