|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ. В треугольник, основание которого равно 48, а высота – 16, вписан прямоугольник с отношением сторон 5 : 9, причём большая сторона лежит на основании треугольника. Найдите стороны прямоугольника. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Найти все такие натуральные числа p, что p и 5p + 1 – простые.
а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p.
Найти все такие натуральные числа p, что p и p² + 2 – простые.
Является ли число 12345678926 квадратом?
Доказать, что следующие числа не являются квадратами:
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|