ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]
Разрежьте произвольный треугольник на 3 части и сложите из них
прямоугольник.
Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).
Разрежьте правильный треугольник шестью прямыми на части и
сложите из них 7 одинаковых правильных треугольников.
Разрежьте правильный шестиугольник на 5 частей и сложите из них
квадрат.
Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке