Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Если для вчера завтра был четверг, то какой день будет вчера для послезавтра?

Вниз   Решение


Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 56672

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.
Прислать комментарий     Решение


Задача 56673

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.
Прислать комментарий     Решение


Задача 56674

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Три окружности S1, S2 и S3 попарно касаются друг друга в трех различных точках. Докажите, что прямые, соединяющие точку касания окружностей S1 и S2 с двумя другими точками касания, пересекают окружность S3 в точках, являющихся концами ее диаметра.
Прислать комментарий     Решение


Задача 56675

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Две касающиеся окружности с центрами O1 и O2 касаются внутренним образом окружности радиуса R с центром O. Найдите периметр треугольника OO1O2.
Прислать комментарий     Решение


Задача 56676

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .