ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разрежьте фигуру, изображённую на рисунке, на две равные части. Если повернуть квадрат вокруг его центра на 45°, то стороны повёрнутого квадрата разобьют каждую сторону первоначального отрезка на три отрезка, длины которых относятся как a : b : a (эти отношения легко вычислить). Для произвольного выпуклого четырёхугольника сделаем аналогичное построение: разобьём каждую его сторону в тех же отношениях a : b : a и проведём прямую через каждые две точки деления, соседние с вершиной (лежащие на сходящейся к ней стороне). Докажите, что площадь четырёхугольника, ограниченного четырьмя построенными прямыми, равна площади исходного четырёхугольника. |
Страница: 1 2 >> [Всего задач: 10]
Две окружности пересекаются в точках P и Q.
Через точку A первой окружности проведены прямые AP
и AQ, пересекающие вторую окружность в точках B и C.
Докажите, что касательная в точке A к первой окружности
параллельна прямой BC.
Окружности S1 и S2 пересекаются в точках
A и B. Через точку A проведена касательная AQ к
окружности S1 (точка Q лежит на S2), а через точку B
-- касательная BS к окружности S2 (точка S лежит на
S1). Прямые BQ и AS пересекают окружности S1 и S2 в
точках R и P. Докажите, что PQRS — параллелограмм.
Касательная в точке A к описанной окружности
треугольника ABC пересекает прямую BC в точке E; AD — биссектриса треугольника ABC. Докажите, что AE = ED.
Окружности S1 и S2 пересекаются в точке A. Через
точку A проведена прямая, пересекающая S1 в точке B, S2
в точке C. В точках C и B проведены касательные
к окружностям, пересекающиеся в точке D. Докажите, что
угол BDC не зависит от выбора прямой, проходящей через A.
Две окружности пересекаются в точках A и B. Из
точки A к этим окружностям проведены касательные AM
и AN (M и N — точки окружностей). Докажите, что:
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке