ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка M лежит на описанной окружности
треугольника ABC; R — произвольная точка. Прямые AR, BR и CR
пересекают описанную окружность в точках A1, B1 и C1. Докажите,
что точки пересечения прямых MA1 и BC, MB1 и CA, MC1
и AB лежат на одной прямой, проходящей через точку R.
Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости N квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички. Задание Напишите программу MATCHES, которая по количеству квадратов N, которые необходимо составить, находит минимальное необходимое для этого количество спичек. Входные данные Единственная строка входного файла MATCHES.DAT содержит одно целое число N (1≤N≤109). Выходные данные Единственная строка выходного файла MATCHES.SOL должна содержать одно целое число - минимальное количество спичек требуемых для составления заданного количества квадратов. Пример входных и выходных данных
|
Страница: 1 2 >> [Всего задач: 7]
На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)
Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке