|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6. Рокфеллер и Маркс играют в такую игру. Имеется $n > 1$ городов, во всех одно и то же число жителей. Сначала у каждого жителя есть ровно одна монета (монеты одинаковы). За ход Рокфеллер выбирает по одному жителю из каждого города, а Маркс перераспределяет между ними их деньги произвольным образом с единственным условием, чтобы распределение не осталось таким, каким только что было. Рокфеллер выиграет, если в какой-то момент в каждом городе будет хотя бы один человек без денег. Докажите, что Рокфеллер может действовать так, чтобы всегда выигрывать, как бы ни играл Маркс, если в каждом городе |
Страница: 1 2 >> [Всего задач: 6]
Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0.
Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.
В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|