Версия для печати
Убрать все задачи
Задача Иосифа Флавия.
n человек выстраиваются по кругу и
нумеруются числами от 1 до
n. Затем из них исключается каждый
второй до тех пор, пока не останется только один человек.
Например, если
n = 10, то порядок исключения таков: 2, 4,
6, 8, 10, 3, 7, 1, 9, так что остается номер 5.
Для данного
n будем обозначать через
J(
n) номер последнего
оставшегося человека. Докажите, что
а)
J(2
n) = 2
J(
n) - 1;
б)
J(2
n + 1) = 2
J(
n) + 1;
в) если
n = (1
bm - 1bm - 2...
b1b0)
2, то
J(
n) = (
bm - 1bm - 2...
b1b01)
2.

Решение
В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)


Решение
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что
прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника,
отсекает от него равносторонний треугольник.

Решение