ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой.

Вниз   Решение


Город представляет из себя клетчатый прямоугольник, в каждой клетке стоит пятиэтажный дом. Закон о реновации позволяет выбрать две соседних по стороне клетки, в которых стоят дома, и снести тот дом, где меньше этажей (либо столько же). При этом над вторым домом надстраивается столько этажей, сколько было в снесённом доме. Какое наименьшее число домов можно оставить в городе, пользуясь законом о реновации, если город имеет размеры
  а) 20×20 клеток;
  б) 50×90 клеток?

ВверхВниз   Решение


На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 [Всего задач: 99]      



Задача 30682  (#096)

Темы:   [ Малая теорема Ферма ]
[ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого  ab ≡ 1 (mod p).

Прислать комментарий     Решение

Задача 60749  (#098)

Темы:   [ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

Прислать комментарий     Решение

Задача 30685  (#099)

Тема:   [ Малая теорема Ферма ]
Сложность: 4+
Классы: 9,10

а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p.

б) Пусть  p > 5  – простое число. Докажите, что число 1...1  (p – 1  единица) делится на p.

Прислать комментарий     Решение

Задача 60750  (#100)

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом простом  p     делится на p.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .