ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что для любого параллелограмма
существует эллипс, касающийся сторон параллелограмма в их
серединах.
Докажите, что квадрат со стороной n не может накрыть более (n + 1)2 точек
целочисленной решётки.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник. |
Страница: << 1 2 [Всего задач: 8]
На отрезке длиной 1 закрашено несколько отрезков,
причем расстояние между любыми двумя закрашенными
точками не равно 0, 1. Докажите, что сумма длин закрашенных
отрезков не превосходит 0, 5.
Даны две окружности, длина каждой из которых
равна 100 см. На одной из них отмечено 100 точек, а на
другой — несколько дуг, сумма длин которых меньше 1 см.
Докажите, что эти окружности можно совместить так, чтобы
ни одна отмеченная точка не попала на отмеченную дугу.
Даны две одинаковые окружности. На каждой из
них отмечено по k дуг, угловые величины каждой из которых
меньше
Страница: << 1 2 [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке