ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Учащиеся одной школы часто собираются группами и ходят в кафе-мороженое. После такого посещения они ссорятся настолько, что никакие двое из них после этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе. |
Страница: 1 2 >> [Всего задач: 6]
По поверхности планеты, имеющей форму бублика, проползли, оставляя за собой следы, две улитки: одна по внешнему экватору, а другая по винтовой линии (см. рис.). На сколько частей разделили поверхность планеты следы улиток? (Достаточно написать ответ.)
В маленьком городе только одна трамвайная линия. Она кольцевая, и трамваи ходят по ней в обоих направлениях. На кольце есть остановки Цирк, Парк и Зоопарк. От Парка до Зоопарка путь на трамвае через Цирк втрое длиннее, чем не через Цирк. От Цирка до Зоопарка путь через Парк вдвое короче, чем не через Парк. Какой путь от Парка до Цирка – через Зоопарк или не через Зоопарк – короче и во сколько раз?
Сложите из трёх одинаковых клетчатых фигур без оси симметрии фигуру с осью симметрии.
Впишите вместо звёздочек шесть различных цифр так, чтобы все дроби были несократимыми, а равенство верным:
Один угол треугольника равен 60°, а лежащая против этого угла сторона равна трети периметра треугольника.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке