ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны два треугольника ABC и A1B1C1. Известно, что
прямые AA1, BB1 и CC1 пересекаются в одной точке O,
прямые AA1, BC1 и CB1 пересекаются в одной точке O1
и прямые AC1, BB1 и CA1 пересекаются в одной точке O2.
Докажите, что прямые AB1, BA1 и CC1 тоже пересекаются
в одной точке O3 (теорема о трижды перспективных треугольниках).
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток. |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?
Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
На дугах AB и BC окружности, описанной около треугольника ABC, выбраны соответственно точки K и L так, что прямые KL и AC параллельны.
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке