Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что  ∠BHP = 90°.  Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что  AP = CQ.

Вниз   Решение


Обозначим вершины и точки звеньев (неправильной) пятиконечной звезды так, как показано на рис. Докажите, что

A1C . B1D . C1E . D1A . E1B = A1D . B1E . C1A . D1B . E1C.




ВверхВниз   Решение


На доске была начерчена трапеция ABCD (AD| BC) и проведены перпендикуляр OK из точки O пересечения диагоналей на основание AD и средняя линия EF. Затем трапецию стерли. Как восстановить чертеж по сохранившимся отрезкам OK и EF?

ВверхВниз   Решение


Докажите, что любой прямоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.

ВверхВниз   Решение


Даны четыре попарно непараллельных вектора, сумма которых равна нулю. Докажите, что из них можно составить: а) невыпуклый четырехугольник; б) самопересекающуюся четырехзвенную ломаную.

ВверхВниз   Решение


Два подобных равнобедренных треугольника имеют общую вершину. Докажите, что проекции их оснований на прямую, соединяющую середины оснований, равны.

ВверхВниз   Решение


Докажите, что уравнение касательной к эллипсу $ {\frac{x^2}{a^2}}$ + $ {\frac{y^2}{b^2}}$ = 1, проведенной в точке X = (x0, y0), имеет вид

$\displaystyle {\frac{x_0x}{a^2}}$ + $\displaystyle {\frac{y_0y}{b^2}}$ = 1.


Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 104095  (#6)

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .