Страница:
<< 1 2 [Всего задач: 8]
Задача
64809
(#9.6)
|
|
Сложность: 4- Классы: 9,10
|
Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности.
Докажите, что точки M, I, N лежат на одной прямой тогда и только тогда, когда AC + BC = 3AB.
Задача
64810
(#9.7)
|
|
Сложность: 4- Классы: 9,10
|
Девять окружностей расположены вокруг произвольного треугольника так, как показано на рисунке. Окружности, касающиеся одной и той же стороны треугольника, равны между собой. Докажите, что три прямые на рисунке пересекаются в одной точке. (Прямые проходят через вершины треугольника и центры соответствующих окружностей.)
Задача
64811
(#9.8)
|
|
Сложность: 5 Классы: 9,10
|
Выпуклый фанерный многоугольник P лежит на деревянном столе. В стол можно вбивать гвозди, которые не должны проходить через P, но могут касаться его границы. Фиксирующим называется набор гвоздей, не позволяющий двигать P по столу. Найдите минимальное количество гвоздей, позволяющее зафиксировать любой выпуклый многоугольник.
Страница:
<< 1 2 [Всего задач: 8]