Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
Задача
66531
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
Про трапецию ABCD с основаниями AD и BC известно,
что AB = BD. Пусть точка M – середина боковой стороны
CD, а O – точка пересечения отрезков AC и BM. Докажите,
что треугольник BOC – равнобедренный.
Задача
66536
(#3)
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Задача
66532
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
На прямой сидят 2019 точечных кузнечиков. За ход
какой-нибудь из кузнечиков прыгает через какого-нибудь
другого так, чтобы оказаться на прежнем расстоянии от
него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут
добиться того же, прыгая из начального положения только
влево.
Задача
66536
(#3)
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Задача
66615
(#3)
|
|
Сложность: 4 Классы: 9,10,11
|
У многогранника, изображенного на рисунке, грани — четыре правильных пятиугольника, четыре треугольника и два квадрата. Во сколько раз сторона верхнего квадрата больше стороны нижнего?
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]