ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом: Радиус окружности равен R. Найдите хорду, проведённую из конца данного диаметра через середину перпендикулярного к нему радиуса. Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой. Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.
Окружности с центрами O1 и O2 пересекаются
в точках A и B . Известно, что Через центр окружности, вписанной в трапецию, проведена прямая, параллельная основаниям. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Найдите с точностью до 0,01 сотый член x100
последовательности {xn}, если
Докажите, что касательная к графику функции f (x), построенная в точке с координатами (x0;f (x0)) пересекает ось Ox в точке с координатой
x0 -
Метод Ньютона. Для приближенного нахождения корней уравнения f (x) = 0 Ньютон предложил искать последовательные приближения по формуле
xn + 1 = xn - (начальное условие x0
следует выбирать поближе к искомому корню).
Докажите, что для функции f (x) = x2 - k и начального условия x0 > 0 итерационный процесс всегда будет сходиться к Как будет выражаться xn + 1 через xn? Сравните результат с формулой из задачи 9.48.
Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если
Пусть p и q — отличные от нуля
действительные числа и p2 - 4q > 0. Докажите, что следующие
последовательности сходятся:
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке