ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 381]      



Задача 103856

Темы:   [ Перебор случаев ]
[ Четность и нечетность ]
[ Доказательство от противного ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Прислать комментарий     Решение

Задача 103862

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 6,7

Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль – 5, а Тофсла – 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)

Прислать комментарий     Решение

Задача 103863

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 3
Классы: 6,7

Поля клетчатой доски размером 8×8 будем по очереди закрашивать в красный цвет так, чтобы после закрашивания каждой следующей клетки фигура, состоящая из закрашенных клеток, имела ось симметрии. Покажите, как можно, соблюдая это условие, закрасить

а) 26; б) 28 клеток.

(В качестве ответа расставьте на тех клетках, которые должны быть закрашены, числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)

Прислать комментарий     Решение


Задача 103865

Темы:   [ Задачи на проценты и отношения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 7,8

Приходя в тир, игрок вносит в кассу 100 рублей. После каждого удачного выстрела количество его денег увеличивается на 10%, а после каждого промаха – уменьшается на 10%. Могло ли после нескольких выстрелов у него оказаться 80 рублей 19 копеек?

Прислать комментарий     Решение

Задача 103878

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 7,8

Автор: Панов М.Ю.

У Васи есть пластмассовый угольник (без делений) с углами 30°, 60° и 90. Ему нужно построить угол в 15°. Как это сделать, не используя других инструментов?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .