Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Жестокий халиф завоевал страну Иванушки-дурацка, а его самого заключил в темницу. Оттуда ведет две двери: одна - в клетку с голодным тигром, а другая - на свободу. У каждой двери стоит по джинну, один из которых всегда говорит правду, а другой всегда лжет. Халиф разрешил Иванушке задать ровно один вопрос одному из джиннов (по внешности джинны не отличаются), на который тот ответит "да" или "нет".
а) Сможет ли Иванушка выйти на свободу?
б) Сможет ли он выйти на свободу, если один из джиннов уйдет курить кальян?

Вниз   Решение


Автор: Wolfram S

Про непрерывную функцию f известно, что:

  1. f определена на всей числовой прямой;
  2. f в каждой точке имеет производную (и, таким образом, график f в каждой точке имеет единственную касательную);
  3. график функции f не содержит точек, у которых одна из координат рациональна, а другая — иррациональна.

Следует ли отсюда, что график f — прямая?

ВверхВниз   Решение


Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?

ВверхВниз   Решение


Ниже приведён фрагмент мозаики, которая состоит из ромбиков двух видов: "широких" и "узких" (см. рис.).

Нарисуйте, как по линиям мозаики вырезать фигуру, состоящую ровно из 3 "широких" и 8 "узких" ромбиков. (Фигура не должна распадаться на части.)

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 6702]      



Задача 102716

Тема:   [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Прислать комментарий     Решение


Задача 116354

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Прислать комментарий     Решение

Задача 116360

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
[ Теорема синусов ]
Сложность: 3-
Классы: 8,9,10

Найдите радиусы вписанной и вневписанных окружностей треугольника со сторонами 3, 4, 5.
Прислать комментарий     Решение


Задача 52357

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Признаки подобия ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

AA1 и BB1 – высоты остроугольного треугольника ABC. Докажите, что:
  а) треугольник AA1C подобен треугольнику BB1C;
  б) треугольник ABC подобен треугольнику A1B1C.
  в) Найдите коэффициент подобия треугольников A1B1C и ABC, если  ∠C = γ.

Прислать комментарий     Решение

Задача 52378

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC  AB = BC = 6.  На стороне AB как на диаметре построена окружность, пересекающая сторону BC в точке D так, что  BD : DC = 2 : 1.
Найдите AC.

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .