ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.

б) На доске выписано 100 целых чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 109819  (#05.5.11.5)

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

Прислать комментарий     Решение

Задача 109820  (#05.5.11.6)

Темы:   [ Ортогональная проекция (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 10,11

Можно ли расположить в пространстве 12 прямоугольных параллелепипедов P1 , P2 , P12 , ребра которых параллельны координатным осям Ox , Oy , Oz так, чтобы P2 пересекался (т.е. имел хотя бы одну общую точку) с каждым из оставшихся, кроме P1 и P3 , P3 пересекался с каждым из оставшихся, кроме P2 и P4 , и т.д., P12 пересекался с каждым из оставшихся, кроме P11 и P1 , P1 пересекался с каждым из оставшихся, кроме P12 и P2 ? (Поверхность параллелепипеда принадлежит ему.)
Прислать комментарий     Решение


Задача 108227  (#05.5.11.7)

Темы:   [ Вспомогательные подобные треугольники ]
[ Описанные четырехугольники ]
[ Подобные фигуры ]
[ Удвоение медианы ]
[ Углы между биссектрисами ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

Четырёхугольник ABCD с попарно непараллельными сторонами описан около окружности с центром O. Докажите, что точка O совпадает с точкой пересечения средних линий четырёхугольника ABCD тогда и только тогда, когда  OA·OC = OB·OD.

Прислать комментарий     Решение

Задача 109822  (#05.5.11.8)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
Сложность: 6+
Классы: 8,9,10,11

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .