ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подисточники:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей? Может ли быть верным равенство К×О×Т = У×Ч×Е×Н×Ы×Й, если в него вместо букв подставить цифры от 1 до 9? Разным буквам соответствуют разные цифры. |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]
Середины противоположных рёбер тетраэдра соединены. Доказать, что сумма трёх полученных отрезков меньше полусуммы рёбер тетраэдра.
36 т груза упаковано в мешки вместимостью не более 1 т. Доказать, что четырёхтонный грузовой автомобиль за 11 поездок может перевезти этот груз.
Найти наименьшее натуральное число A, удовлетворяющее следующим
условиям:
На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.
Постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 132]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке