ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 58212  (#24.007)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на параллелограммы ]
[ Неравенства с площадями ]
[ Целочисленные решетки (прочее) ]
Сложность: 5
Классы: 9,10

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.
Прислать комментарий     Решение


Задача 58213  (#24.011)

Тема:   [ Целочисленные решетки (прочее) ]
Сложность: 5
Классы: 9,10

Докажите, что для любого n существует окружность, внутри которой лежит ровно n целочисленных точек.
Прислать комментарий     Решение


Задача 58214  (#24.012)

Тема:   [ Целочисленные решетки (прочее) ]
Сложность: 7
Классы: 9,10

Докажите, что для любого n существует окружность, на которой лежит ровно n целочисленных точек.
Прислать комментарий     Решение


Задача 58215  (#24.008)

 [Теорема Минковского]
Тема:   [ Теорема Минковского ]
Сложность: 6
Классы: 9,10

Начало координат является центром симметрии выпуклой фигуры площадью более 4. Докажите, что эта фигура содержит хотя бы одну точку с целыми координатами, отличную от начала координат.
Прислать комментарий     Решение


Задача 58216  (#24.009)

Тема:   [ Теорема Минковского ]
Сложность: 6
Классы: 9,10

а) Во всех узлах целочисленной решетки, кроме одного, в котором находится охотник, растут деревья, стволы которых имеют радиус r. Докажите, что охотник не сможет увидеть зайца, находящегося от него на расстоянии больше 1/r.
б) Пусть n — натуральное число. Во всех точках целочисленной решетки, расположенных строго внутри окружности радиуса $ \sqrt{n^2+1}$ с центром в начале координат и отличных от начала координат, растут деревья радиуса r. Докажите, что если r < $ {\frac{1}{\sqrt{n^2+1}}}$, то на указанной окружности есть точка, которую можно увидеть из начала координат.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .