ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Бумажный равносторонний треугольник перегнули по прямой так, что одна из вершин попала на противоположную сторону (см. рисунок).
Докажите, что углы двух белых треугольников соответственно равны.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109608  (#95.5.9.1)

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 7,8,9

Товарный поезд, отправившись из Москвы в x часов y минут, прибыл в Саратов в y часов z минут. Время в пути составило z часов x минут.
Найдите все возможные значения x.

Прислать комментарий     Решение

Задача 109609  (#95.5.9.2)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Задача 109610  (#95.5.9.3)

Темы:   [ Исследование квадратного трехчлена ]
[ Многочлен n-й степени имеет не более n корней ]
[ Квадратные уравнения. Теорема Виета ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 8,9,10

Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Прислать комментарий     Решение

Задача 109611  (#95.5.9.4)

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?

Прислать комментарий     Решение

Задача 109612  (#95.5.9.5)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .