ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Летела стая гусей, а навстречу им летит один гусь и говорит: "Здравствуйте, сто гусей!" Вожак стаи отвечает ему: "Нет, нас не сто гусей! Вот, если бы нас было столько, сколько есть, да еще столько, да еще полстолька, де еще четверть столька, да ты, гусь, с нами, вот тогда нас было бы сто гусей, а так..." Сколько же гусей было в стае?

Вниз   Решение


Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]      



Задача 86485

Темы:   [ Наглядная геометрия в пространстве ]
[ Боковая поверхность параллелепипеда ]
Сложность: 2
Классы: 7,8

Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

Прислать комментарий     Решение

Задача 86491

Темы:   [ Равногранный тетраэдр ]
[ Боковая поверхность тетраэдра и пирамиды ]
Сложность: 2
Классы: 10,11

Дана пирамида АВСD (см. рис.). Известно, что
$ \triangle$ADB = $ \triangle$DBC;
$ \triangle$ABD = $ \triangle$BDC;
$ \triangle$BAD = $ \triangle$ABC.
Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника АВС равна 10 см2.

Прислать комментарий     Решение

Задача 86496

Тема:   [ Неравенства с модулями ]
Сложность: 2
Классы: 8,9

Решите неравенство:
|x + 2000| < |x - 2001|.
Прислать комментарий     Решение


Задача 86509

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 115962

Тема:   [ Формулы сокращенного умножения ]
Сложность: 2
Классы: 7,8,9

Автор: Фольклор

Найдите x 3 + y3, если известно, что x + y = 5 и x + y + x2y + xy2 = 24.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .