|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Сравните между собой наименьшие положительные корни многочленов x2011 + 2011x – 1 и x2011 – 2011x + 1. Стороны $AB$, $BC$, $CD$ и $DA$ четырехугольника $ABCD$ касаются окружности с центром $I$ в точках $K$, $L$, $M$ и $N$ соответственно. На прямой $AI$ выбрана произвольная точка $P$. Прямая $PK$ пересекает прямую $BI$ в точке $Q$. Прямая $QL$ пересекает прямую $CI$ в точке $R$. Прямая $RM$ пересекает прямую $DI$ в точке $S$. Докажите, что точки $P$, $N$ и $S$ лежат на одной прямой. |
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 6702]
В треугольнике ABC медиана AM продолжена за точку M на
расстояние, равное AM.
Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка.
Диагонали AC и BD четырёхугольника ABCD пересекаются в точке O. Периметр треугольника ABC равен периметру треугольника ABD, а периметр треугольника ACD – периметру треугольника BCD. Докажите, что AO = BO.
Высоты треугольника ABC, проведённые из вершин B и C
пересекаются в точке M. Известно, что BM = CM.
Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.
Страница: << 128 129 130 131 132 133 134 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|