Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Между двумя параллельными прямыми дана точка. С помощью циркуля и линейки постройте окружность, проходящую через эту точку и касающуюся данных прямых.

Вниз   Решение


Две прямые проходят через точку M и касаются окружности в точках A и B. Проведя радиус OB, продолжают его за точку B на расстояние BC = OB. Докажите, что $ \angle$AMC = 3$ \angle$BMC.

ВверхВниз   Решение


Автор: Креков Д.

По целому числу a построим последовательность  a1 = aa2 = 1 + a1a3 = 1 + a1a2a4 = 1 + a1a2a3,  ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов  an+1an  – квадраты целых чисел.

ВверхВниз   Решение


В семье шестеро детей. Пятеро из них соответственно на 2, 6, 8, 12 и 14 лет старше младшего, причём возраст каждого ребенка – простое число.
Сколько лет младшему?

Вверх   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 6702]      



Задача 53553

Темы:   [ Параллелограмм Вариньона ]
[ Средняя линия треугольника ]
Сложность: 3-
Классы: 8,9

Определите вид четырёхугольника, вершинами которого служат середины сторон данного: 1) произвольного четырёхугольника; 2) параллелограмма; 3) прямоугольника, 4) ромба; 5) квадрата; 6) трапеции.

Прислать комментарий     Решение


Задача 53562

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Угол между касательной и хордой ]
Сложность: 3-
Классы: 8,9

Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

Прислать комментарий     Решение

Задача 53705

Темы:   [ Теорема косинусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

В прямоугольном треугольнике ABC с равными катетами AC и BC на стороне AC как на диаметре построена окружность, пересекающая сторону AB в точке M. Найдите расстояние от вершины B до центра этой окружности, если BM = $ \sqrt{2}$.

Прислать комментарий     Решение


Задача 53955

Темы:   [ Признаки и свойства касательной ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

Угол с вершиной C равен 120o. Окружность радиуса R касается сторон угла в точках A и B. Найдите AB.

Прислать комментарий     Решение


Задача 54000

Темы:   [ Геометрические Места Точек ]
[ ГМТ - прямая или отрезок ]
Сложность: 3-
Классы: 8,9

Найдите геометрическое место центров окружностей, касающихся данной прямой в данной точке.

Прислать комментарий     Решение


Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .