ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 31261  (#31)

Темы:   [ Арифметика остатков (прочее) ]
[ Китайская теорема об остатках ]
Сложность: 3
Классы: 6,7,8

a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

Прислать комментарий     Решение

Задача 60460  (#32)

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

Прислать комментарий     Решение

Задача 31263  (#33)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  3n + 1  не делится на 10100.

Прислать комментарий     Решение

Задача 108743  (#34)

Темы:   [ Деление с остатком ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9

Доказать, что остаток от деления простого числа на 30 – простое число или единица.

Прислать комментарий     Решение

Задача 31265  (#35)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

m и n взаимно просты, b – произвольное целое число. Доказать, что числа  b,  b + n,  b + 2n,  ...,  b + (n – 1)n  дают все возможные остатки по модулю m.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .